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ABSTRACT  

  Here this paper is dedicated to find and generalize the famous Richard C. Tolman’s 

Schwarzschild interior solution in higher dimensions. This solution is very important and useful in 

understanding and discussing the internal construction of stars. Max Wyman’s generalization has 

been also discussed to some extent. Energy density  and pressure p have been found. These 

solutions can be matched at the boundary with the exterior solution (Myers and Perry, 1986).        
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1. INTRODUCTION  

  Einstein’s field equations which connect the distribution of matter and energy with the 

gravitational field (described by the potential gij) are 

 
ij ij ij ij

1
8 T R Rg g

2
−  = − + 

 
               where Tij is the material energy momentum tensor, Rij. The Ricci tensor, R, the curvature 

invariant (or scalar curvature tensor) and  , the cosmological constant. The field equations being 

highly non-linear, the exact solutions are obtained only in a few special cases. Professor Richard C. 

Tolman [27] considered the problem which corresponds to an equilibrium distribution of perfect 

fluid and obtained solutions under some mathematical restrictions. Here we discuss and obtain higher 

dimensional generalization of Tolman’s (1939) solution which are significant in the study of the 

internal structure of stars.  

       If we set = 0 in agreement with known fact that the cosmological constant is too small 

to produce appreciable effective within a moderate spatial range. The above Einstein’s field 

equations (with =0) may be written as  

 
ij ij ij

1
8 T R Rg

2
−  = −

 
               Where velocity of light and gravitational constant is taken to be unity in the usual units.  

       Infect physicist shown their keen interest in the exact physical situation at very early 

stages of the formation of our universe. World geometry  

 

by Kaluza-Klein is that the universe started out in a higher-dimensional phase with some dimensions 

eventually collapsing and stabilizing at a size close to the Planck length while three others continued 

to expand and are still doing so (Sahdev [21]). Here this paper is dedicated to find and generalize the 

famous Richard C. Tolman’s Schwarzschild interior solution in higher dimensions. This solution is 

very important and useful in understanding and discussing the internal construction of stars. Max 

Wyman’s generalization has been also discussed to some extent. Energy density  and pressure p 

have been found. These solutions can be matched at the boundary with the exterior solution (Myers 

and Perry, 1986).        
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2. THE FIELD EQUATIONS 

  We take the static spherically symmetric metric for D = n+3-dimensional space-time in the 

form given by (Myers and Perry [20]. 

(2.1)     

        where A = A(r) and B = B (r). Also  

  etc.  

   

The Einstein field equations for D = (n + 3) dimensional space. time are  

(2.2)   

 

The field equations (2.2) for the metric (2.1) yield  

(2.3)   

(2.4) 

A

2 2

B n n 16
e p

r r r (n 1)

−   
+ − = 

+   

(2.5)   

(2.6)   

We multiply equation (2.4) by 2/r and then arranging the terms, we obtain 

(2.7)   

 

 3.  SOLUTIONS OF THE FIELD EQUATION 

  The general solution of equation (2.7) as such is difficult to obtain, therefore to make the 

equation (2.7) integrable, we use some judicious conditions on A or B or relation between A and B 

and then give resulting solution for eA, eB, r and p as functions of r which can be obtained by 

combining the new equation with (2.7), (2.3) and (2.4). Below we discuss the Schwarzschild interior 

solution obtained by Tolman in higher dimensions. 

 

4.      EINSTEIN UNIVERSE IN HIGHER DIMENSIONS 

   Here we choose  

(4.1) eB = constant = k (say)  

  With this assumption equation (2.7) becomes immediately integrable because the second two 

terms vanish due to the constancy of eB and we get  

(4.2)  

A

2

d n(e 1)
0

dr r

− −
= 

   

which on integration yields   
A

2 2

n(e 1) 1
constant (say)

r R

− −
= = −

 
which gives  

(4.3)  

2

2

r
e 1

nR

− = −
 

Use of equation (4.1) in equations (2.4) and (4.3), we find pressure p as  

(4.4)  
2

(n 1)
p

16 R

+
=

  

Similarly, from equations (2.3) and (4.3), we find density  as 

(4.5)  
2

(n 2)(n 1)

16 nR

+ +
 =


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The resulting solution has found popularity in static cosmology. It is the analogue of static Einstein 

universe in higher dimension with uniform pressure and density. 

 

 

 

 

 

5. SCHWARZSCHILD INTERIOR SOLUTION 

         In this case we assume  

(5.1)  

2
A

2

r
e 1

nR

−  
= − 
   

which on substitution in (2.7) simplifies it since first term vanishes and we set  

 

A B
A Bd e B d e B

e 0
dr 2r dr 2r

−
− −    

+ =   
     

which on integration finally provides the solution  

(5.2)  

2
1/ 2

2
B 2

2

r
e nkR 1

nR

  
=  − −  
     

where  and k are constants Now using equation (5.1) and (5.2) in (2.3) and (2.4) the pressure and 

density are found to be 

(5.3)  

1/ 2
2

2

2 2

(n 1) r
p (n 2)kR 1

16 R nR

  +
= + − −   

    

1
1/ 2

2
2

2

r
nkR 1

nR

−

  
 − −  
     

 

(5.4)  
2

(n 1)(n 2)

16 nR

+ +
 =

  

The solution can be considered as higher dimensional analogue of well-known Schwarzschild 

interior solution for a fluid sphere of constant density. When k = 0, the solution provides higher 

dimensional analogue of Einstein universe as obtained, 

When  = 0,  

we find  

(5.5)  

2 2
A B

2 2

r r
e 1 and e constant 1

nR nR

−    
= − = −   
     

In this case we take  

(5.6)  

B B
e

2r


=

constant 

With this, the third term of equation (2.7) vanishes and we get  

  (5.7)       

A A

2

d e 1 d e B
0

dr r dr 2r

− −    −
+ =   

     

                 

A A

2

(e 1) e B
n

r 2r

− − −
+ =

 (constant) 

        Integrating (5.6) we get 



 
4                                                        JNAO Vol. 15, Issue. 2, No.5 :  2024 

 

(5.8)  

2
B 2

2

r
e 1

 
=  + 

   (,  are constants) 

 

Which on combination with (5.7) finally gives  

(5.9)   

On substituting 
Ae ,A and B−  

from (5.8) and (5.9) we can easily find p and  from equations (2.3) 

and (2.4) as (5.10)   

(5.11)  

2 2

2 2

2 2

2

(n 2) (n 2)r
1

16 1 nR nR
(n 1) (1 n)r

1
n

 +  +
 + +

   =
 +   +

+  
  

2

2

22 2

2

r
1

2 nR

(1 n)r
1

n

 
 −
 +
   +
 + 

     

 

The line element describing this solution can be written using eA and eB in equation (2.1) 

   

                         At the centre of sphere, the pressure (pC) and density (C) can be found by putting r = 

0 in equations (5.10) and (5.11) and they are  

(5.12)  
C 2 2

1 1 (n 1)
p

A R 16

+  
= −  

    

and  

(5.13)  
C 2 2

2 1 1 (n 1)
1

n A R 16

+   
 = + +   

     

The equations (5.10) – (5.13) can be combined in the convent simple form given by 

(5.14)  

2

C
C C

C C

4(n 1)(p p)
(n 4)(p p)

n( p )

+ −
 =  − + − −

 +
 

       Which is known as equation of state connecting the density and pressure of the fluid inside the 

sphere.  

   

           At the boundary of the sphere the pressure drops to zero and the boundary density b has the 

value for equation (5.14) 

(5.15)  

2

c
b C C

C C

4(n 1)p
(n 4)p

n( p )

+
  − + −=

 +
 

From equation (5.10) we find that at the boundary r = rb of sphere (where p = 0), we have  

(5.16)   

 The solution may be a useful one in studying properties of spheres of compressible fluid in 

higher dimensions since the equation of state (5.14) is relatively simple. 

 These solutions can be matched at the boundary r = rb with the exterior solution (Myers and 

Perry [20]) 

(5.17)   

  

where w related to total mass of the fluid inside a sphere of radius rb given by 

(5.18)   

were  

(5.19)   
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